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Abstract

q\Jhen a new computer software package is developed, a testing procedure
is often put into effect to eliminate the faults, or bugs, in the package.
One common procedure is to try the package on a set of well known problems
to try to see if any errors result. This goes on for some fixed time with
all detected errors being noted. Then the testing stops and the package
is carefully checked to determine the specific bugs that were responsible
for the observed errors, and the package is then altered to remove these

bugs. A problem of great importance is the estimation of the error rate
of this revised software package.

To model the above, we suppose that initially the package contains m
an unknown number, of bugs which cause errors to occur in accordance with

independent Poisson process having unknown rates ‘Xi’, i=1], ..., m. We

suppose that the package is to be run for t time units and that each error

is, independently, detected with some known probability p . At the end of
this time, a careful check of the package is made to determine the specific
bugs that caused the detected errors (that is, a debugging takes place).
These bugs are then removed and the problem of interest is to determine the
error rate for the revised package. In this paper we show how to estimate

this quantity under a variety of assumptions as to what is learned when the
debugging occurx
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STATISTICAL ESTIMATION OF SOFTWARE RELIABILITY

by

Sheldon M. Ross
University of California, Berkeley

0. INTRODUCTION

When a new computer software package is developed, a testing procedure
is often put into effect to eliminate the faults, or bugs, in the package.
One common procedure is to try the package on a set of well known problems
to try to see if any errors result. This goes on for some fixed time with
all detected errors being noted. Then the testing stops and the package is
carefully checked to determine the specific bugs that were responsible for
the observed errors, and the package is then altered to remove these bugs.
However, as we cannot be certain that all the bugs in the package have been
eliminated, a problem of great importance is the estimation of the error
rate of the revised software package.

To model the above, let us suppose that initially the package contains
m , an unknown number, of bugs which we will refer to as bug 1l,bug 2, ...,
bug m . Suppose also that bug i will cause errors to occur in accordance
with a Poisson process having an unknown rate Ai s, 1i=1, ..., m . Then,
for instance, the number of errors due to bug i that occur in any s
units of operating time is Poisson distributed with mean Ais . Also sup-
pose that these Poisson processes caused by bugs i , i =1, ..., m are
independent. Also we suppose that the package is to be run for t time
units and we suppose that each error is, independently, detected with some

known probability p . At the end of this time, a careful check of the

package is made to determine the specific bugs that caused the detected
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errors (that is, a debugging takes place). These bugs are then removed and

the problem of interest is to determine the error rate for the revised pack-
age.

The above problem is considered in Section 1 and a preliminary estima-
tion is presented. In Section 2, we make the added assumption that once a
given bug has been found, its error rate becomes known. Under this assump-
tion, we show how to improve upon the estimator of Section 1. We also
present, in Section 2, an estimator different than that in Section 1 which
can be used when error rates are not learned and one that can be used when
debuggings necessarily occur whenever an error is detected. In Section 3,
we consider the situation where a debugging occurs whenever an error is
detected but it need not be successful. In Section 4, we start with a
Bayesian model which initially assumes that the number of errors is Poisson
distributed with known mean ¢ , and given the number of bugs the failure
rates of the bugs are independent with a common known distribution G . We
then successively allow, in Section 4.1, the Poisson parameter c¢ to be
unknown, and, in Section 4.2, both ¢ and G to be unknown. 1In both
these latter cases, we suppose that a bugs failure rate becomes known when
the bug is detected. Interestingly, our estimate when both ¢ and G are
unknown is identical to the one given in Section 2. In Section 5, we show
how the data at time t can be used to estimate what the total error rate
would be at time t + s 1if the testing were to continue for an additional
time s and also present an estimator for the expected number of new bugs

that are discovered in (t , t + s) .

For a survey of other statistical procedures used in software reliabil-

ity estimation, the interested reader should see Ramamoorthy and Bastani [7].
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1. A PRELIMINARY MODEL

Let

1 if bug i has not caused a detected error by t
v (e) =
0 otherwise .

The quantity we wish to estimate is thus
ACe) =) Aq¥y ()
i
the error rate of the final package. To start note that

E[{A(t)]

g MEY, ()]

~A,pt

(1) =] Age i,
i
Now each of the bugs that are discovered would have been responsible for a
certain number of detected errors. Let us denote bv Mj(t) the number of
bugs that were responsible for j detected errors, j > 1 . That is, Ml(t)
is the number of bugs that caused exactly 1 detected error, Mz(t) is the
number that caused 2 errors, and so on, with z ij
3

number of detected errors. To compute E[Ml(t)] , let us define the indi-

(t) equalling the total

cator variables, Ii(t) ,1>1, by

1 bug i causes exactly 1 detected error
Li() =
0 otherwise .
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Then, :::
M (t) = ] I,(t) !
! <
and so j::
!.
—Aipt -
(2) E[M,(t)] = ] E[I,(t)] =] A, pte ™
1 i 1 o
i i Aot
Thus, from (1) and (2) we obtain the intriguing result that :
M, (t)
E{A(t) - ot =0 .
M, (t)
This suggests the possible use of pr: as an estimate of A(t) . To iﬁf
M, (t)

determine whether or not

constitutes a '""good" estimate of A(t) we

shall look at how far apart these 2 quantities tend to be. That is, we will

compute
M, (t) 2 M, (e)
E (A(t) i ) = Var (A(t) - ot )
= Var (A(t)) - ﬁ% Cov (A(E),M; (£)) + ;5%5 var (u,(t)) . ;ii
Now
Var (A(t)) =

=\, tp -A,tp
Z Ai Var (wi(t)) = z Afe i (1 - e 1 )
i i

—Xipt -Aipt
Var (Ml(t)) z Var (Ii(t)) = z Aipte (1 - Aipte )

i i
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Cov (A(t),Ml(t)) Cov (g “1w1(t)’§ Ij(t))

g Z Cov (A;0,(t),I,(t))

i 3

; Aq Cov (¥, (£),I,(t))

(]
|
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>
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(1]
>
[y
e
(ad
©

where the last two equalities follow since wi(t) and I,(t) are inde-

i :

pendent when i # j as they refer to different Poisson processes, and :ﬁ

wi(t)Ii(t) = 0 . Hence we obtain that 5

{
Ml(t) 2 9 —Aitp 1 -)\itp -
— - + —
E (A(t) s ) g rje o g rje

proeed
i E[Ml(t) + 2M2(t)] ‘-f-#-

p2t2 o
R

where the last equality follows since o
=i, tp :f:

2 <

EM(6)] =f e * (O tp)?/2. o

2 i e

i
-'—A

Thus we can estimate the average square of the difference between -

M. (t) - .
A(t) and ot by the observed value of Ml(t) + 2M2(t) divided by p°t [{W
- .Za
-~
Remark: R
The above analysis is similar in spirit to that done in Robbins [4]. iﬂ

Very similar results have also been presented by Diaconis in a set of L
unpublished notes on decision theory. Sa
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2. ERROR RATES LEARNED UPON DEBUGGING

Let us now suppose that the failure rate due to a bug becomes known
once the bug has been discovered. That is, we are supposing that based
on our experience we are able to accurately estimate the faiiure rate due
to any particular bug once it has been discovered.

Let R denote the number of bugs discovered by time t and let

A A be their failure rates. Then

12 -0 Mg

-Aipt
Aipte
E[M, () | RyAys weny Al = —————f:ngg (1 - ¢, (1))

We shall consider ‘ﬁ? E[Ml(t) | R,Al, cees AR] as an estimate of A(t) .

Since
E[E[M, (t) | RyAps wvey Apl) = EMM ()] = ptE[A(t)]

its square error loss is as follows:

-\, pt
Aie i
Var |} (1 -y (t)) - ACE)
-\,pt i
i i
l-oe
-A,pt
Aie i
= )
var ) St T M v, (t)
i i
l-e
Z Ai -Aipt -Aipt
= —Fpt e 1 -e
i 1-e i
-\,pt
e 1 -
e '_
=A,pt -
i l-e 1 .f
K
-
- ’.:
-
SRR R e e e e e s e L]
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It should be noted that as

A 2 A
gt = AT+ ot s, A>0,t>0
1 -
it follows that
-\, pt -A,pt
; e T E Al 1
= 1 -y, (t)) = —
i }iPt t 151 APt
l-e¢e l-e

is a better estimator of A(t) than is Ml(t)/tp , and should thus be pre-

ferred whenever the finding of a bug also reveals its failure rate.
Remarks:

(i) The above estimator can be used whether debugging is performed when-
ever an error is detected and the bug removed or if the debugging is
performed at time t . In this latter case, another estimator is
obtained by first noting that, independent of the bugs causing the

errors, detected errors will occur at a Poisson rate p z Ai .
i

Hence, letting D(t) = Z iMi(t) denote the number of detected errors

1 R T
D(t) . .

by t , then can be used to estimate E A, . As 2 A, is
pt . 1 . 1 -—
i i=1 -]
the error rate due to those bugs that have caused detected errors, s
D(t) 3 B
it thus follows that i Z Ai is an estimator of A(t) . To B
P i=1 .
evaluate its worth, note that Zf{
<
R —kipt ?i}
) = - = - . 1
E .z | = E|) A (1= v () Z xi(l e ) i
i=1 i i T
o
o
.‘T'.1
%
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(1)
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and so
R -A,tp
D(t) - i _
E[ vty izl Ai] =] re = E[A(t)] .
Also
R Ly
D(t) _ D(t)} _ i
Var ( v 121 Ay - A(t)) = Var ( ot ) =5t
However,

et~

31 _ED®)] E[Ml(t) + 2M2(t)] v (A(t> ) Ml(t))
tp P2t2 - pzt2 pt
Ml(t)

it follows that this estimator is not even as good as y:

[Of course, the estimator could be improved somewhat by considering
R
max(O,D(—E)— z Ai) ]
P i=1
If we are not willing to suppose that we can accurately estimate
the failure rate of a discovered bug, another approach is to sup-

pose that you can express your feelings in terms of a probability

iistribution Gi on Ai . This suggests the estimator

—Aitp

R 1
Z EG —T/\l—tp data

where Gi is ones feelings about the ith discovered bug (after it
has been identified). If the debugging is performed at time t ,

then the data consists of the number of detected errors due to the

ith bug to be discovered.
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f (iii) 1If one is not willing to take the above "Bayesian approach', one :f
could try maximum likelihood estimates. For instance, if all E:
- debugging is performed at time t , then with Ni(t) denoting 5
the number of detected errors caused by bug i , the estimator E
-Ni(t) r
N, (t)e -1 -
1 i 1 ie -
Ey(t) === e s - T () 22— -
3 Pt Ni(t) pt § i 1-e i :
l1-e :
L
x is suggested. Whereas additional numerical work is needed to see .
;; Ml(t) 1?
.i- how this estimator compares with pt » Preliminary simulation o
Eé investigations show that it compares quite favorably (see Table 1). f
"
- (iv) Suppose that the nature of the problem is such that a debugging .
:f_ must take place whenever an error is detected and the bug removed. .
, ;
. If we are able to determine the bug's failure rate, then this -

; case reduces to one originally considered in this section.
E However, let us now suppose that the bugs discovery sheds no ;
N ’

light on its failure rate. If Ti , 1 =1, ..., R denote the !
:: times at which the detected errors occur, then the MLE of

Al, eees Ap s 1/T1, cevy 1/TR . Hence a natural estimator )

to consider in this case is

g e—pt/Ti e-p/ai .
E (t) = = .
l‘ 1 1-"(l - e-pt/Ti) 1 1 Qa (1 - e-p/ai) ‘.
i

-
I e~100

- where ay = Ti/t .

(v) The following is a partial summary of extensive simulations.

..............
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) TABLE 1 o
i Summary of Simulation Results: Average values based on 100 simulations: p=t=1
'- R Aie Ai
E RN 121.—_—_73:;
. 1-e
B - -
5 Ey= [ M, e j_j ) E, = § e Ty
3 l1-e i=1 . (1 _ e-l/Ti)
i
Average values: based on 100 simulations
€-ran? | @mran? | Eman? |oE )’
50 bugs unif (0,3) -
Case 1 35.364 23.753 26.155 60.282 S
Case 2 38.678 27.279 27.559 68.528 25
50 bugs unif (0,4) c‘.
Case 1 30.311 23,772 25.027 53.324 ;iﬁ
Case 2 36.569 25.814 26.169 64.773 ]
50 bugs unif (0,5) %
Case 1 19,881 15,914 16.593 27.751 g;j
Case 2 30.431 27.723 27.061 40.583 e
Case 3 36.133 25.341 26.418 48.156 N
Case 4 29.588 22.255 24,368 25.996 .
Case 5 30.693 25.802 27.712 34.181 —
Case 6 23.772 18.534 21.588 22.915 e
50 bugs unif (0,6) =
case 1 21.528 15.989 17.998 18.658 £
Case 2 21.284 18.854 17.462 29.050 R
Case 3 25.738 21.613 21.447 30.873 =
Case 4 21,306 20769 18.973 24.786 o
50 bugs unif (0,7) :f%
Case 1 33.928 25.449 26.865 34.641 =
Case 2 28.415 21.366 22.286 29.503 Eff




(vi)

The results of this section are consistent with the hypothesis
that in attempting to estimate A(t) the best one can do is

to estimate E[A(t)] . That is, suppose one somehow knows the

Pl I

-A,pt
value z Aie 1 . Then the author suggests that the data should
i -Aipt
be ignored and A(t) should be estimated by ) Ae . As
i
=X tp -\, tp
var (A(e)) = J a2e ! (1 —e 1 )
i
=\, tp
Aie 1
< =i, tp
i 1-e i

it follows that E[A(t)] is a better estimate of A(t) than is
~-A,tp
R i
z ——j;——jr—g— . Of course E[A(t)] 4is unknown and cannot be
=1, _ 1 P
-e

directly implemented as an estimator. (The results of Section 4

also indicates that, in effect, we are really trying to estimate

E[A(t)] and not A(t) .

Py

7 s _ 8 0 r

. » 30
g AP P

[N

.

AN

e
i

)
o

A A'.J: .
»




T

12

3. ALLOWING FOR UNSUCCESSFUL DEBUGGINGS

I Suppose as in the previous section, that detected errors lead to im-
mediate debugging with the failure rate of the responsible bug being deter-
. mined. However, let us now suppose that the debugging is only successful
' with probability o . That is, with probability 1 - a a new bug, which
we will suppose has the same failure rate as the bug just removed, is
created. (Thus we can think of the newly created bug as either being the
' old bug which was not successfully eliminated or as being a brand new bug
: caused by our change in the program that eliminated the old bug and which
has the same failure rate as the old bug). Suppose also that when a

i debugging takes place, we are able to tell whether the responsible bug was
initially present or was created by a previous debugging.

We can estimate the fajlure rate at time t as follows: Let us start
i . by adopting the interpretation that if a debugging is unsuccessful, then the
responsible bug remains in the program. That is, we are identifying any

newly created bug as being identical to the one removed. Suppose that R

i distinct bugs~-~having failure rates Al, ceey AR--have been discovered, with
;: Ly »1=1, ..., R representing the last time that the bug with rate A,
: -A tp
- R Ae 1
E has been responsible for a detected error. Then z it estimates
, i=1 i
' l-e

the error rate at time t of those bugs that have not yet appeared. Also

the discovered bug with rate A, will still be present in the package at

i
-A, (t-L,)
e 1 1 (1 - o)
-A,(t-L,) °
a4+ (1 - a)e 1 i

e

a’s .
LI

time t with probability

Hence the total rate at

time t can be estimated from

- v e .
1’ s 8
IR

-A N
R itp "\:1
A + 1-0 . Ot
=1 1 “hyte Ay(e-Ly) 2

—
!
m
-
1
[*]
+
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4. A BAYESIAN MODEL

To formulate a Bayesian model, we need specify a prior joint distribu~
tion for m , Al’ ey Am . As there are a large number of possible things
that could go wrong when putting together a software package, each having a
small probability of going wrong, it seems reasonable to suppose that m ,
the number of bugs, has a Poisson distribution. Also, given m , we shall
suppose that the resulting failure rates are independent and identically

distributed. So let us make the following assumption.

Assumption:

The number of bugs m has a Poisson distribution with mean ¢ ; and
given m , Al’ ooy Am are independent and have the common distribution
G . Both ¢ and G are assumed to be known.

We shall assume that once a bug is detected, its failure rate becomes
known and the bug is eliminated. (That is, o of Section 3 is taken to
equal 1).

As each of the Poisson number of bugs will independently result in a

detected error with probability given by
-Apt
P{bug has a detected error} = | (1 - e )YdG ()

it follows that the number of discovered bugs is Poisson with mean
c J.(l - e-Apt)dG(A) and is independent of the number of undetected bugs
which is Poisson with mean ¢ J.e-xpth(A) . Also the conditional distribu-

tion of a bugs failure rate, given that the bug is not discovered is as

follows:

e-xpth(x)
Ie'“’tdc(x)

dG(\ | not discovered) =

13
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Hence,

E[X | not discovered] =
e Ptac(r)

fAe-)‘pth(A)

and thus
E[{A(t) | data] = cfe"‘P"dc(x)E[x | not discovered]

cfAe-Apth(A) .

That is, the Bayes estimator with respect to square error loss is independent

of the data and is as given above.

4.1 Unknown c

If ¢ 1is unknown in the above model, then we can estimate it by

R
Ja - e
has a Poisson distribution with mean ¢ J'(l - e-xpt)dG(A)). Hence, we can

,» where R is the number of discovered bugs (and thus

estimate the Bayes estimator as follows:

Rf re *Ptac(n)
est

E[A(t) I data] "= — .
f(l - e *Phacm)

4.2 Both ¢ And G Unknown

Note first that the conditional distribution of the fault rate of a

bug that is discovered is as follows:

~Apt

de(r | discovered) = 1 =—¢ —~ )dG())
] f(l - e "PYHacn)

- - P IR S S « ot

e et “ el Wt et et LT . ISR I S S N et e Tttt
e T e e T e e N e S T TR A R R S P I
Pt et et s et et . -t L PRI LR . )

. - - . " . .t - - - T et et et aTe TN «® 0.
o - S A T R
R . - - o » * . - ot i .t . . - - - - . ., - - 3 - . . -
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Hence,
-Atp Jxe'“pdc(x)
le
E-————f:KE— discovered| = Thpt
1 - e P f(l - e YdG(n)
- __E[ACt) | data]
Y
cf (1 - e "PHde(n)
and as
-Apt
Rc ]l (1-e )dG(X)
-Aipt
Ae-Atp 1 R Aie
E ~ ito discovered] = R Z B e
1-e P =1, _ 4P

we see that the Bayes estimator can be estimated from

—Aitp
est R Aie
E[A(L) ] data] = 2 —_T—t;
i=1 i
l-e

[

which is the same estimate given in Section 2.
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5. ESTIMATING A FUTURE FAILURE RATE

Using the same notation as in Section 4, suppose we are now interested
in estimating at time t what the failure rate would be at time t + s if
testing is continued for an additional s time units. As in Section 4,

the Bayes estimate of A(t + s) 1is, when ¢ and G are known,
E[A(t +s) | data to t] = cfxe'xp(t‘*s)dc(x) .

Now suppose ¢ and G are unknown. We can estimate c as before from

f(l “P)dcm

where R 1is the number of bugs discovered by t . Also as

pe-hp(t+s) e AP(E¥S) 405
E it l discovered by t myvs
1-¢ P f(l—ep)dG(A)
we see that
-1;p(t+s) i
est R Aie N
(3 E(A(t +s) | data to t] 8% | —vu
1=1 ~hypt .
l - e R
o
]
where Al, ey AR are the discovered failure rates by t . '_'.j;-j
1f we now forget the Bayesian scenario that led to the above estimator *_‘__j
and consider it from a more classical approach, we obtain that .j::'
o
T
3
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=A,p(t+s) =2, p(t+s)
i i
R Aie Aie
E| } el IR ) — T (1 - ()
i=1 i i i
l-e 1-~-e
-Aip(t+s)
=) xe = E[A(t + 8)] .
i
i
Also,
—Aip(t+s) 2
% Aie
E — - At + s)
1=1 Agpe
l1-e¢e
-A. p(t+s)
i
Aie
= Var {] At wi(t) + ) Aiwi(t + s)
i i i
l1-e
o ~2h;p(tts)
) Z Aie -Aipt 2 —Aip(t+s) -Aip(t+s)
= x.pt e + z Aie l-e
i i i
l1-e
=2) p(t+s)
+ 2 z Aie 1
i
2 -A,p(t+s) -Aip(t+s)
=722 1 P —
i i Aipt

l1-e

The above estimate presupposes that a bugs failure rate becomes known
when the bug is discovered. If this is not the case, then we can still use
the data obtained by t to estimate A(t + s) . One approach is to note

that

where Ni(t) is the number of detected errors caused by bug i . Hence,

using (3) we can estimate A(t + s) by

.....
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-N, (t)p(t+s)/t

i
N,(t)e
A(Ct + s) egt 1 L
t =N, (t)p
1 i
l1-e
4
1 © ie-ip(1+s/t)
= ) M, () = -
i=1 l1--e

A second approach to estimating A(t + s) 1is to note the following:

=x,p(t+s)
i
A.e
i

E{A(t + s)]

2 3
-A Pt (A;ps) (x;ps)
;Aie 1 - Aps + 5 - STt .

© M, (t)
1 E[ ) ii— 181-1(_1)14-1] .
P oli=1 ¢

The last equality following since

A
=x.pt (A, pt)
E[Mj(t)]=2e 1 “%T_

i !

Hence the above suggests the possible estimator

M, (t)
1i isi-l(-l)
t

(5) At + 8) est %_ i+1 ]

i=1
Though we intuitively favor (4), numerical tests are needed to see whether
(4) or (5) yields the better estimates. Of course, s should not be too

large in relation to t for either estimate to be very effective.

We can also use the above to estimate the expected number of new bugs
s
discovered in (t , t + s) . As this quantity is equal to pE 5 At + y)dyl ,
0

it follows from (3) that we can estimate this quantity by
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=A,p(t+s) -A,ps\ -A,pt
lizi e t R (l-ei)ei
P dy = .
z -A,pt - -A,pt
1=19  ,_ 1 1=1 1-e 1

When the failure rates do not become known when a bug is detected, we can

estimate the expected number of bugs that will be discovered between t

and t + s by

-ip
J M (t) —S—— (1 - e 1P8/ty |
i 1 1- e_ip

Remarks:

(1) The results in this section can be used to devise an easily imple-
mented stopping rule for testing. One could test for a time t and
then based on the observed data choose an additional time testing time
s such that the estimated error rate at s would be acceptable. One
can then reevaluate this after testing for the additional time to de-

termine whether to stop or to continue for an additional time indi-

cated by the above.
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